



**Instructor:** Chris Ferguson

## **Physics 30 Online Tutorial**

Chris is a certified Alberta teacher and his biggest passion in life, next to his wife and two kids, is teaching physics!

Interactive online classroom – real-time communication with your instructor and classmates. Printable learning materials, assignments, and practice exams will be provided.

→ Access any missed classes (or classes you simply wish to view again) anytime, on-demand.

Confirmed Online Class Schedule (10 classes, each running 4:00 – 5:00pm, followed by a 15 min Q&A)

**JOIN ANYTIME!** Students can sign-up and join anytime, including after April 15<sup>th</sup>. (Recordings will be made for each class and full access provided upon registration)

| Class | Date                        | Unit                | Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|-----------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Tue, April 14 <sup>th</sup> | B – Forces & Fields | Magnetic Forces, Whatever else                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2     | Mon, April 20 <sup>th</sup> | C-EMR               | 30–C1.1k describe, qualitatively, how all accelerating charges produce EMR 30–C1.2k compare and contrast the constituents of the electromagnetic spectrum on the basis of frequency and wavelength 30–C1.3k explain the propagation of EMR in terms of perpendicular electric and magnetic fields that are varying with time and travelling away from their source at the speed of light 30–C1.4k explain, qualitatively, various methods of measuring the speed of EMR 30–C1.5k calculate the speed of EMR, given data from a Michelson-type experiment |
| 3     | Tue, April 21 <sup>st</sup> | C - EMR             | 30–C1.6k describe, quantitatively, the phenomena of reflection and refraction, including total internal reflection 30–C1.7k describe, quantitatively, simple optical systems, consisting of only one component, for both lenses and curved mirrors 30–C1.8k describe, qualitatively, diffraction, interference and polarization                                                                                                                                                                                                                          |
| 4     | Wed, April 22 <sup>nd</sup> |                     | 30–C1.9k describe, qualitatively, how the results of Young's double-slit experiment support the wave model of light 30–C1.10k solve double-slit and diffraction grating problems using appropriate formulas 30–C1.11k describe, qualitatively and quantitatively, how refraction supports the wave model of EMR                                                                                                                                                                                                                                          |

|   |                             |           | 30–C1.12k compare and contrast the visible spectra                                    |
|---|-----------------------------|-----------|---------------------------------------------------------------------------------------|
|   |                             |           | produced by diffraction gratings and triangular                                       |
|   |                             |           | prisms.                                                                               |
| 5 | Mon, April 27 <sup>th</sup> | C-EMR     | 30–C2.1k define the photon as a quantum of EMR and                                    |
|   | , '                         |           | calculate its energy                                                                  |
|   |                             |           | 30–C2.2k classify the regions of the electromagnetic                                  |
|   |                             |           | spectrum by photon energy                                                             |
|   |                             |           | 30–C2.3k describe the photoelectric effect in terms of the                            |
|   |                             |           | intensity and wavelength or frequency of                                              |
|   |                             |           | the incident light and surface material                                               |
|   |                             |           | 30–C2.4k describe, quantitatively, photoelectric emission,                            |
|   |                             |           | using concepts related to the conservation                                            |
|   |                             |           | of energy                                                                             |
|   |                             |           | 30–C2.5k describe the photoelectric effect as a phenomenon                            |
|   |                             |           | that supports the notion of the                                                       |
|   |                             |           | wave-particle duality of EMR                                                          |
| 6 | Wed, April 28 <sup>th</sup> | C-EMR     | 30–C2.6k explain, qualitatively and quantitatively, the                               |
|   |                             |           | Compton effect as another example of                                                  |
|   |                             |           | wave-particle duality, applying the laws of mechanics and of conservation of momentum |
|   |                             |           |                                                                                       |
|   |                             |           | and energy to photons.                                                                |
|   |                             |           | Review of all of Unit C                                                               |
| 7 | Mon, May 4 <sup>th</sup>    | D- Atomic | 30–D1.1k describe matter as containing discrete positive                              |
|   |                             |           | and negative charges                                                                  |
|   |                             |           | 30–D1.2k explain how the discovery of cathode rays                                    |
|   |                             |           | contributed to the development of atomic                                              |
|   |                             |           | models                                                                                |
|   |                             |           | 30–D1.3k explain J. J. Thomson's experiment and the                                   |
|   |                             |           | significance of the results for both science and                                      |
|   |                             |           | technology 30–D1.4k explain, qualitatively, the significance of the                   |
|   |                             |           | results of Rutherford's scattering experiment,                                        |
|   |                             |           | in terms of scientists' understanding of the relative size and                        |
|   |                             |           | mass of the nucleus and the                                                           |
|   |                             |           | atom.                                                                                 |
|   |                             |           | 30–D2.1k explain, qualitatively, how emission of EMR by                               |
|   |                             |           | an accelerating charged particle                                                      |
|   |                             |           | invalidates the classical model of the atom                                           |
|   |                             |           | 30–D2.2k describe that each element has a unique line                                 |
|   |                             |           | spectrum                                                                              |
|   |                             |           | 30–D2.3k explain, qualitatively, the characteristics of, and                          |
|   |                             |           | the conditions necessary to produce,                                                  |
|   |                             |           | continuous line-emission and line-absorption spectra                                  |
|   |                             |           | 30–D2.4k explain, qualitatively, the concept of stationary                            |
|   |                             |           | states and how they explain the observed spectra of atoms and molecules               |
| 8 | Wed, May 6 <sup>th</sup>    | D- Atomic | 30–D2.5k calculate the energy difference between states,                              |
|   |                             |           | using the law of conservation of energy and                                           |
|   |                             |           | the observed characteristics of an emitted photon                                     |
|   |                             |           | 30–D2.6k explain, qualitatively, how electron diffraction                             |
|   |                             |           | provides experimental support for the                                                 |
|   |                             |           | de Broglie hypothesis                                                                 |

|    |                           |           | 30–D2.7k describe, qualitatively, how the two-slit electron interference experiment shows that quantum systems, like photons and electrons, may be modelled as particles or waves, contrary to intuition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----|---------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9  | Mon, May 11 <sup>th</sup> | D- Atomic | 30–D3.1k describe the nature and properties, including the biological effects, of alpha, beta and gamma radiation 30–D3.2k write nuclear equations, using isotope notation, for alpha, beta-negative and beta-positive decays, including the appropriate neutrino and antineutrino 30–D3.3k perform simple, nonlogarithmic half-life calculations 30–D3.4k use the law of conservation of charge and mass number to predict the particles emitted by a nucleus 30–D3.5k compare and contrast the characteristics of fission and fusion reactions 30–D3.6k relate, qualitatively and quantitatively, the mass defect of the nucleus to the energy released in nuclear reactions, using Einstein's concept of mass-energy equivalence. |
| 10 | Wed, May 13 <sup>th</sup> |           | Final review of concepts as directed by the class.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |